Finding an induced subdivision of a digraph

نویسندگان

  • Jørgen Bang-Jensen
  • Frédéric Havet
  • Nicolas Trotignon
چکیده

We consider the following problem for oriented graphs and digraphs: Given an oriented graph (digraph) G, does it contain an induced subdivision of a prescribed digraph D? The complexity of this problem depends on D and on whether H must be an oriented graph or is allowed to contain 2-cycles. We give a number of examples of polynomial instances as well as several NP-completeness proofs. Key-words: NP-completeness, induced paths and cycles, linkings, 3-SAT ∗ This work was done while the first author was on sabbatical at Team Mascotte, INRIA, Sophia Antipolis France whose hospitality is gratefully acknowledged. Financial support from the Danish National Science research council (FNU) (under grant no. 09-066741) is gratefully acknowledged. † Department of Mathematics and Computer Science, University of Southern Denmark, Odense DK-5230, Denmark (email: [email protected]). ‡ Projet Mascotte, I3S (CNRS, UNSA) and INRIA, Sophia Antipolis. Partly supported by ANR Blanc AGAPE. (email:[email protected]) § CNRS, Université Denis Diderot Paris 7, LIAFA (email: [email protected]) in ria -0 05 27 51 8, v er si on 1 19 O ct 2 01 0 Trouver une subdivision induite d’un digraphe Résumé : Nous considérons le problème suivant: étant donné un graphe orienté (ou un digraphe) G, contient-il une subdivision induite d’un digraphe fixé D? La complexité de ce problème dépend de D et du fait que G ne puisse être qu’un graphe orienté ou puisse contenir des 2-cycles. Nous donnons des exemples d’instances polynomiales ainsi que des preuves de NP-complétude. Mots-clés : NP-complétude, chemins et cycles induits, linkings, 3-SAT in ria -0 05 27 51 8, v er si on 1 19 O ct 2 01 0 Finding an induced subdivision of a digraph 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding a subdivision of a digraph

We consider the following problem for oriented graphs and digraphs: Given a directed graphD, does it contain a subdivision of a prescribed digraph F? We give a number of examples of polynomial instances, several NP-completeness proofs as well as a number of conjectures and open problems. Key-words: NP-completeness, 2-linkage, flows, DAG and handle decompositions. ∗ Department of Mathematics and...

متن کامل

A note on complete subdivisions in digraphs of large outdegree

Mader conjectured that for all ` there is an integer δ(`) such that every digraph of minimum outdegree at least δ(`) contains a subdivision of a transitive tournament of order `. In this note we observe that if the minimum outdegree of a digraph is sufficiently large compared to its order then one can even guarantee a subdivision of a large complete digraph. More precisely, let ~ G be a digraph...

متن کامل

On the complexity of finding internally vertex-disjoint long directed paths

For two positive integers k and `, a (k × `)-spindle is the union of k pairwise internally vertexdisjoint directed paths with ` arcs between two vertices u and v. We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contains a subdivision of a spindle, which generalize both the Maximum Flow and Longest Path problems. We obtain th...

متن کامل

Subdivisions in digraphs of large out-degree or large dichromatic number∗

In 1985, Mader conjectured the existence of a function f such that every digraph with minimum out-degree at least f(k) contains a subdivision of the transitive tournament of order k. This conjecture is still completely open, as the existence of f(5) remains unknown. In this paper, we show that if D is an oriented path, or an in-arborescence (i.e., a tree with all edges oriented towards the root...

متن کامل

Further results on odd mean labeling of some subdivision graphs

Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2011